



CHEMISTRY HIGHER LEVEL PAPER 1

Monday 9 May 2011 (afternoon)

1 hour

## **INSTRUCTIONS TO CANDIDATES**

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.

| 0                  | 2<br><b>He</b><br>4.00 | 10<br>Ne<br>20.18             | 18<br><b>Ar</b><br>39.95 | 36<br><b>Kr</b><br>83.80 | 54<br><b>Xe</b><br>131.30 | 86<br><b>Rn</b><br>(222)           |                          |                           |     |
|--------------------|------------------------|-------------------------------|--------------------------|--------------------------|---------------------------|------------------------------------|--------------------------|---------------------------|-----|
| _                  |                        | 9<br><b>F</b><br>19.00        | 17<br>Cl<br>35.45        | 35<br><b>Br</b><br>79.90 | 53<br>I<br>126.90         | 85<br><b>At</b><br>(210)           |                          | 71<br><b>Lu</b><br>174.97 | 103 |
| 9                  |                        | 8<br><b>O</b><br>16.00        | 16<br>S<br>32.06         | 34<br><b>Se</b><br>78.96 | 52<br><b>Te</b><br>127.60 | 84 <b>Po</b> (210)                 |                          | 70<br><b>Yb</b><br>173.04 | 102 |
| w                  |                        | 7<br>N<br>14.01               | 15<br><b>P</b><br>30.97  | 33<br><b>As</b><br>74.92 | 51<br><b>Sb</b><br>121.75 | 83<br><b>Bi</b><br>208.98          |                          | 69<br><b>Tm</b><br>168.93 | 101 |
| 4                  |                        | 6<br>C<br>12.01               | 14<br><b>Si</b><br>28.09 | 32<br><b>Ge</b><br>72.59 | 50<br><b>Sn</b><br>118.69 | 82<br><b>Pb</b><br>207.19          |                          | 68<br>Er<br>167.26        | 100 |
| ъ                  |                        | 5<br><b>B</b><br>10.81        | 13<br>Al<br>26.98        | 31<br><b>Ga</b><br>69.72 | 49<br><b>In</b><br>114.82 | 81<br><b>TI</b><br>204.37          |                          | 67<br><b>Ho</b><br>164.93 | 66  |
|                    |                        |                               |                          | 30<br><b>Zn</b><br>65.37 | 48<br><b>Cd</b><br>112.40 | 80<br><b>Hg</b><br>200.59          |                          | 66<br><b>Dy</b><br>162.50 | 86  |
| ole                |                        |                               |                          | 29<br><b>Cu</b><br>63.55 | 47<br><b>Ag</b><br>107.87 | 79<br><b>Au</b><br>196.97          |                          | 65<br><b>Tb</b><br>158.92 | 97  |
| dic Tal            |                        |                               |                          | 28<br>Ni<br>58.71        | 46<br><b>Pd</b><br>106.42 | 78<br><b>Pt</b><br>195.09          |                          | 64<br><b>Gd</b><br>157.25 | 96  |
| The Periodic Table |                        |                               |                          | 27<br>Co<br>58.93        | 45<br><b>Rh</b><br>102.91 | 77<br><b>Ir</b><br>192.22          |                          | 63<br>Eu<br>151.96        | 95  |
| The                |                        |                               |                          | 26<br>Fe<br>55.85        | 44<br><b>Ru</b><br>101.07 | 76<br><b>Os</b><br>190.21          |                          | 62<br><b>Sm</b><br>150.35 | 94  |
|                    |                        |                               |                          | 25<br><b>Mn</b><br>54.94 | 43<br><b>Tc</b><br>98.91  | 75<br><b>Re</b><br>186.21          |                          | 61<br><b>Pm</b><br>146.92 | 93  |
|                    | number                 | Element  Relative atomic mass |                          | 24<br><b>Cr</b><br>52.00 | 42<br><b>Mo</b><br>95.94  | 74<br><b>W</b><br>183.85           |                          | 60<br><b>Nd</b><br>144.24 | 92  |
|                    | Atomic number          | Eler<br>Relative at           |                          | 23<br>V<br>50.94         | 41<br><b>Nb</b><br>92.91  | 73<br><b>Ta</b><br>180.95          |                          | 59<br><b>Pr</b><br>140.91 | 91  |
|                    | <u> </u>               | н                             |                          | 22<br><b>Ti</b><br>47.90 | 40 <b>Zr</b> 91.22        | 72<br><b>Hf</b><br>178.49          |                          | 58<br>Ce<br>140.12        | 06  |
|                    |                        |                               |                          | 21<br><b>Sc</b><br>44.96 | 39<br>Y<br>88.91          | 57 <b>†</b><br><b>La</b><br>138.91 | 89 ‡ <b>Ac</b> (227)     | <b>*</b> -                | ++  |
| 2                  |                        | 4 <b>Be</b> 9.01              | 12<br><b>Mg</b><br>24.31 | 20<br><b>Ca</b><br>40.08 | 38<br><b>Sr</b><br>87.62  | 56<br><b>Ba</b><br>137.34          | 88<br><b>Ra</b><br>(226) |                           |     |
| 1                  | 1<br><b>H</b><br>1.01  | 3<br>Li<br>6.94               | 11<br><b>Na</b><br>22.99 | 19<br><b>K</b><br>39.10  | 37<br><b>Rb</b><br>85.47  | 55<br>Cs<br>132.91                 | 87<br><b>Fr</b> (223)    |                           |     |
|                    |                        |                               |                          |                          |                           |                                    |                          |                           |     |

- 1. 1.7 g of NaNO<sub>3</sub> ( $M_r = 85$ ) is dissolved in water to prepare  $0.20 \text{ dm}^3$  of solution. What is the concentration of the resulting solution in mol dm<sup>-3</sup>?
  - A. 0.01
  - B. 0.1
  - C. 0.2
  - D. 1.0
- 2. What mass, in g, of hydrogen is formed when 3 mol of aluminium react with excess hydrochloric acid according to the following equation?

$$2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2(g)$$

- A. 3.0
- B. 4.5
- C. 6.0
- D. 9.0
- 3. The relative molecular mass of a gas is 56 and its empirical formula is  $CH_2$ . What is the molecular formula of the gas?
  - A. CH<sub>2</sub>
  - B.  $C_2H_4$
  - C.  $C_3H_6$
  - D.  $C_4H_8$

**4.** What is the sum of all coefficients when the following equation is balanced using the smallest possible whole numbers?

$$\underline{\hspace{1cm}} C_2H_2 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O$$

- A. 5
- B. 7
- C. 11
- D. 13
- **5.** What is the electron configuration of vanadium?
  - A.  $1s^22s^22p^63s^23p^63d^24s^3$
  - B.  $1s^22s^22p^63s^23p^63d^34s^2$
  - C.  $1s^22s^22p^63s^23p^63d^44s^1$
  - D.  $1s^22s^22p^63s^23p^63d^5$
- **6.** Which quantities are the same for all atoms of chlorine?
  - I. Number of protons
  - II. Number of neutrons
  - III. Number of electrons
  - A. I and II only
  - B. I and III only
  - C. II and III only
  - D. I, II and III

- 7. Which property generally **decreases** across period 3?
  - A. Atomic number
  - B. Electronegativity
  - C. Atomic radius
  - D. First ionization energy
- **8.** Which statement about the elements in group 7 is correct?
  - A. Br<sub>2</sub> will oxidize Cl<sup>-</sup>.
  - B.  $F_2$  has the least tendency to be reduced.
  - C.  $Cl_2$  will oxidize  $I^-$ .
  - D.  $I_2$  is a stronger oxidizing agent than  $F_2$ .
- **9.** Which electron transitions are responsible for the colours of transition metal compounds?
  - A. Between d orbitals and s orbitals
  - B. Among the attached ligands
  - C. From the metal ion to the attached ligands
  - D. Between d orbitals
- 10. How many  $\sigma$  and  $\pi$  bonds are present in a molecule of propyne, CH<sub>3</sub>CCH?

|    | σ | π |
|----|---|---|
| A. | 5 | 3 |
| В. | 6 | 2 |
| C. | 7 | 1 |
| D. | 8 | 0 |

- 11. Which species does **not** contain delocalized electrons?
  - A. CH<sub>3</sub>CH<sub>2</sub>O<sup>-</sup>
  - B. CH<sub>3</sub>CO<sub>2</sub><sup>-</sup>
  - $C. O_3$
  - D.  $NO_3^-$
- **12.** Which compound forms hydrogen bonds in the liquid state?
  - A.  $C_2H_5OH$
  - B. CHCl<sub>3</sub>
  - C. CH<sub>3</sub>CHO
  - D. (CH<sub>3</sub>CH<sub>2</sub>)<sub>3</sub>N
- **13.** Which particles are responsible for electrical conductivity in metals?
  - A. Anions
  - B. Cations
  - C. Electrons
  - D. Protons
- 14. The Lewis structure of  $SO_2$  is given below.

What is the shape of the SO<sub>2</sub> molecule?

- A. Bent (V-shaped)
- B. Linear
- C. T-shaped
- D. Triangular planar

$$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(l)$$

What are the signs of  $\Delta H$ ,  $\Delta S$  and  $\Delta G$  for this reaction?

|    | ΔΗ | ΔS | $\Delta G$ |
|----|----|----|------------|
| A. | _  | _  | _          |
| B. | _  | +  | _          |
| C. | +  | +  | _          |
| D. | _  | +  | +          |

**16.** Which reaction has the greatest increase in entropy?

A. 
$$SO_2(g) + 2H_2S(g) \rightarrow 2H_2O(l) + 3S(s)$$

B. 
$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

C. 
$$\operatorname{CaC}_2(s) + 2\operatorname{H}_2\operatorname{O}(l) \rightarrow \operatorname{Ca}(\operatorname{OH})_2(s) + \operatorname{C}_2\operatorname{H}_2(g)$$

D. 
$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

17. Consider the two reactions involving iron and oxygen.

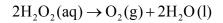
$$2\text{Fe}(s) + O_2(g) \rightarrow 2\text{FeO}(s)$$

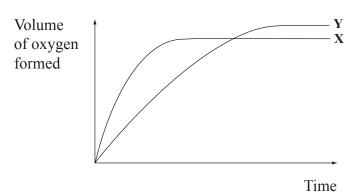
$$\Delta H^{\Theta} = -544 \text{ kJ}$$

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$

$$\Delta H^{\oplus} = -1648 \text{ kJ}$$

What is the enthalpy change, in kJ, for the reaction below?


$$4\text{FeO}(\text{s}) + \text{O}_2(\text{g}) \rightarrow 2\text{Fe}_2\text{O}_3(\text{s})$$


A. 
$$-1648 - 2(-544)$$

C. 
$$-1648 - 544$$

D. 
$$-1648 - 2(544)$$

- **18.** Which statement about bonding is correct?
  - A. Bond breaking is endothermic and requires energy.
  - B. Bond breaking is endothermic and releases energy.
  - C. Bond making is exothermic and requires energy.
  - D. Bond making is endothermic and releases energy.
- 19. Which equation corresponds to the lattice enthalpy for silver iodide, AgI?
  - A.  $AgI(s) \rightarrow Ag(s) + I(g)$
  - B.  $AgI(s) \rightarrow Ag(s) + \frac{1}{2}I_2(g)$
  - C.  $AgI(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$
  - D.  $AgI(s) \rightarrow Ag^{+}(g) + I^{-}(g)$
- **20.** Curve **X** on the graph below shows the volume of oxygen formed during the catalytic decomposition of a 1.0 mol dm<sup>-3</sup> solution of hydrogen peroxide.





Which change would produce the curve **Y**?

- A. Adding water
- B. Adding some 0.1 mol dm<sup>-3</sup> hydrogen peroxide solution
- C. Using a different catalyst
- D. Lowering the temperature

$$Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$$

Which rate equation is consistent with the experimental data?

| [Br <sub>2</sub> ] / mol dm <sup>-3</sup> | [NO] / mol dm <sup>-3</sup> | Rate / mol dm <sup>-3</sup> s <sup>-1</sup> |
|-------------------------------------------|-----------------------------|---------------------------------------------|
| 0.10                                      | 0.10                        | 1.0×10 <sup>-6</sup>                        |
| 0.20                                      | 0.10                        | 4.0×10 <sup>-6</sup>                        |
| 0.20                                      | 0.40                        | 4.0×10 <sup>-6</sup>                        |

A. rate = 
$$k [Br_2]^2 [NO]$$

B. rate = 
$$k [Br_2] [NO]^2$$

C. rate = 
$$k \left[ Br_2 \right]^2$$

D. rate = 
$$k [NO]^2$$

22. Consider the reaction between gaseous iodine and gaseous hydrogen.

$$I_2(g) + H_2(g) \rightleftharpoons 2HI(g)$$
  $\Delta H^{\ominus} = -9 \text{ kJ}$ 

Why do some collisions between iodine and hydrogen **not** result in the formation of the product?

- A. The I<sub>2</sub> and H<sub>2</sub> molecules do not have sufficient energy.
- B. The system is in equilibrium.
- C. The temperature of the system is too high.
- D. The activation energy for this reaction is very low.

- **23.** Which step is the rate-determining step of a reaction?
  - A. The step with the lowest activation energy
  - B. The final step
  - C. The step with the highest activation energy
  - D. The first step
- 24. Which statement about chemical equilibria implies they are dynamic?
  - A. The position of equilibrium constantly changes.
  - B. The rates of forward and backward reactions change.
  - C. The reactants and products continue to react.
  - D. The concentrations of the reactants and products continue to change.
- **25.** Which is the correct relationship between enthalpy of vaporization, intermolecular forces and boiling point?

|    | Enthalpy of vaporization | Intermolecular<br>forces | Boiling point |
|----|--------------------------|--------------------------|---------------|
| A. | small                    | weak                     | high          |
| B. | small                    | strong                   | low           |
| C. | large                    | weak                     | high          |
| D. | large                    | strong                   | high          |

- **26.** Which salts will produce an acidic solution when dissolved in water?
  - I. CH<sub>3</sub>COOK
  - II. NH<sub>4</sub>NO<sub>3</sub>
  - III.  $Al_2(SO_4)_3$
  - A. I and II only
  - B. I and III only
  - C. II and III only
  - D. I, II and III
- **27.** Consider the equilibrium below.

$$CH_3CH_2COOH(aq) + H_2O(l) \rightleftharpoons CH_3CH_2COO^-(aq) + H_3O^+(aq)$$

Which species represent a conjugate acid-base pair?

- A. CH<sub>3</sub>CH<sub>2</sub>COOH and H<sub>2</sub>O
- B. H<sub>2</sub>O and CH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup>
- C.  $H_3O^+$  and  $H_2O$
- D. CH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup> and H<sub>3</sub>O<sup>+</sup>
- **28.** The  $K_b$  value for a base is  $5.0 \times 10^{-2}$  mol dm<sup>-3</sup> at 298 K. What is the  $K_a$  value for its conjugate acid at this temperature?
  - A.  $5.0 \times 10^{-2}$
  - B.  $2.0 \times 10^{-6}$
  - C.  $2.0 \times 10^{-12}$
  - D.  $2.0 \times 10^{-13}$

- 29. Which compounds can be mixed together as solutions of equal volume and concentration to form a buffer solution?
  - A. Nitric acid and potassium hydroxide
  - В. Nitric acid and potassium nitrate
  - C. Propanoic acid and potassium hydroxide
  - D. Propanoic acid and potassium propanoate
- **30.** Consider the following standard electrode potentials.

$$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$$

$$E^{\oplus} = -0.76 \text{ V}$$

$$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$$
  $E^{\ominus} = +1.36 \text{ V}$ 

$$E^{\oplus} = +1.36 \text{ V}$$

$$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$$

$$E^{\oplus} = -2.37 \text{ V}$$

What will happen when zinc powder is added to an aqueous solution of magnesium chloride?

- No reaction will take place. A.
- B. Chlorine gas will be produced.
- C. Magnesium metal will form.
- Zinc chloride will form. D.
- Which species could be reduced to form NO<sub>2</sub>? 31.
  - A. N,O
  - В.  $NO_3^-$
  - C. HNO,
  - D. NO

- **32.** What are the features of a standard hydrogen electrode?
  - I. A temperature of 298 K
  - II. A carbon electrode
  - III. Hydrogen gas at 1.01×10<sup>5</sup> Pa (1 atm) pressure
  - A. I and II only
  - B. I and III only
  - C. II and III only
  - D. I, II and III
- **33.** Which molecule has a chiral centre?
  - A. CH<sub>3</sub>CH=CHCHO
  - B. (CH<sub>3</sub>)<sub>2</sub>C=CHCH<sub>2</sub>OH
  - C. CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub>
  - D. CH<sub>3</sub>CHOHCH<sub>2</sub>CH<sub>3</sub>
- **34.** The compounds H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub> and HOOCCH<sub>2</sub>COOH react to form a polymer. What is the structure of the repeating unit of the polymer?
  - A. (HNCH<sub>2</sub>CONHCH<sub>2</sub>CH<sub>2</sub>NHCO)
  - B. (HNCH, CH, NHCOCH, CO)
  - C. +OCCH<sub>2</sub>CONHCH<sub>2</sub>NHCO+
  - D. (HNCH<sub>2</sub>CH<sub>2</sub>NHCOCH<sub>2</sub>NH)

W 
$$H_3C$$
  $C = C$   $C = C$ 

$$C \longrightarrow C$$
 $C \longrightarrow C$ 
 $C \longrightarrow C$ 
 $C \longrightarrow C$ 
 $C \longrightarrow C$ 

**- 14 -**

$$Y$$
  $H_3C$   $C$   $H$ 

- A. X and Z
- B. X and Y
- C. W and Y
- D. W and Z

**36.** What is the correct order of reaction types in the following sequence?

$$C_3H_7Br \xrightarrow{\mathbf{I}} C_3H_7OH \xrightarrow{\mathbf{II}} C_2H_5COOH \xrightarrow{\mathbf{III}} C_2H_5COOC_2H_5$$

|    | I            | II           | III          |
|----|--------------|--------------|--------------|
| A. | substitution | oxidation    | condensation |
| B. | addition     | substitution | condensation |
| C. | oxidation    | substitution | condensation |
| D. | substitution | oxidation    | substitution |

- **37.** Which of the following pairs are members of the same homologous series?
  - A. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH and CH<sub>3</sub>CH<sub>2</sub>CHO
  - B. CH<sub>3</sub>CH(OH)CH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub>
  - C. CH<sub>3</sub>COCH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>COOH
  - D. CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>CHO
- **38.** Which of the following statements about alkenes is **not** correct?
  - A. They have reactive double bonds.
  - B. They can form addition polymers.
  - C. They react mainly by substitution.
  - D. They can react with water to form alcohols.
- **39.** What is the type of mechanism and an important feature of the reaction between C(CH<sub>3</sub>)<sub>3</sub>Br and aqueous NaOH?

|    | Mechanism        | Feature            |
|----|------------------|--------------------|
| A. | $S_N 1$          | a transition state |
| B. | $S_N 1$          | an intermediate    |
| C. | $S_N 2$          | a transition state |
| D. | S <sub>N</sub> 2 | an intermediate    |

- **40.** A burette reading is recorded as  $27.70 \pm 0.05$  cm<sup>3</sup>. Which of the following could be the actual value?
  - I. 27.68 cm<sup>3</sup>
  - II. 27.78 cm<sup>3</sup>
  - III. 27.74 cm<sup>3</sup>
  - A. I and II only
  - B. I and III only
  - C. II and III only
  - D. I, II and III