22116107

CHEMISTRY

HIGHER LEVEL

PAPER 1

Monday 9 May 2011 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1. 1.7 g of $\mathrm{NaNO}_{3}\left(M_{\mathrm{r}}=85\right)$ is dissolved in water to prepare $0.20 \mathrm{dm}^{3}$ of solution. What is the concentration of the resulting solution in $\mathrm{mol} \mathrm{dm}^{-3}$?
A. 0.01
B. 0.1
C. 0.2
D. 1.0
2. What mass, in g , of hydrogen is formed when 3 mol of aluminium react with excess hydrochloric acid according to the following equation?

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

A. $\quad 3.0$
B. 4.5
C. 6.0
D. 9.0
3. The relative molecular mass of a gas is 56 and its empirical formula is CH_{2}. What is the molecular formula of the gas?
A. CH_{2}
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{3} \mathrm{H}_{6}$
D. $\mathrm{C}_{4} \mathrm{H}_{8}$
4. What is the sum of all coefficients when the following equation is balanced using the smallest possible whole numbers?

$$
\mathrm{C}{2} \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow _\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

A. 5
B. 7
C. 11
D. 13
5. What is the electron configuration of vanadium?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{3}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4} 4 s^{1}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$
6. Which quantities are the same for all atoms of chlorine?
I. Number of protons
II. Number of neutrons
III. Number of electrons
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
7. Which property generally decreases across period 3?
A. Atomic number
B. Electronegativity
C. Atomic radius
D. First ionization energy
8. Which statement about the elements in group 7 is correct?
A. Br_{2} will oxidize Cl^{-}.
B. $\quad F_{2}$ has the least tendency to be reduced.
C. Cl_{2} will oxidize I^{-}.
D. I_{2} is a stronger oxidizing agent than F_{2}.
9. Which electron transitions are responsible for the colours of transition metal compounds?
A. Between d orbitals and s orbitals
B. Among the attached ligands
C. From the metal ion to the attached ligands
D. Between d orbitals
10. How many σ and π bonds are present in a molecule of propyne, $\mathrm{CH}_{3} \mathrm{CCH}$?
A.
B.

$\boldsymbol{\sigma}$	$\boldsymbol{\pi}$
5	3
6	2
7	1
8	0

11. Which species does not contain delocalized electrons?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$
B. $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
C. O_{3}
D. NO_{3}^{-}
12. Which compound forms hydrogen bonds in the liquid state?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
B. CHCl_{3}
C. $\mathrm{CH}_{3} \mathrm{CHO}$
D. $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
13. Which particles are responsible for electrical conductivity in metals?
A. Anions
B. Cations
C. Electrons
D. Protons
14. The Lewis structure of SO_{2} is given below.

What is the shape of the SO_{2} molecule?
A. Bent (V-shaped)
B. Linear
C. T-shaped
D. Triangular planar
15. When hydrogen peroxide decomposes, the temperature of the reaction mixture increases.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What are the signs of $\Delta H, \Delta S$ and ΔG for this reaction?
A.

$\Delta \boldsymbol{H}$	$\boldsymbol{\Delta S}$	$\boldsymbol{\Delta} \boldsymbol{G}$
-	-	-
-	+	-
+	+	-
-	+	+

16. Which reaction has the greatest increase in entropy?
A. $\quad \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{~S}(\mathrm{~s})$
B. $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
C. $\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
D. $\quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
17. Consider the two reactions involving iron and oxygen.

$$
\begin{array}{ll}
2 \mathrm{Fe}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}(\mathrm{~s}) & \Delta H^{\ominus}=-544 \mathrm{~kJ} \\
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \Delta H^{\ominus}=-1648 \mathrm{~kJ}
\end{array}
$$

What is the enthalpy change, in kJ , for the reaction below?

$$
4 \mathrm{FeO}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

A. $-1648-2(-544)$
B. $-544-(-1648)$
C. $-1648-544$
D. $-1648-2(544)$
18. Which statement about bonding is correct?
A. Bond breaking is endothermic and requires energy.
B. Bond breaking is endothermic and releases energy.
C. Bond making is exothermic and requires energy.
D. Bond making is endothermic and releases energy.
19. Which equation corresponds to the lattice enthalpy for silver iodide, AgI ?
A. $\quad \mathrm{AgI}(\mathrm{s}) \rightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{I}(\mathrm{g})$
B. $\operatorname{AgI}(\mathrm{s}) \rightarrow \mathrm{Ag}(\mathrm{s})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g})$
C. $\quad \mathrm{AgI}(\mathrm{s}) \rightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})$
D. $\mathrm{AgI}(\mathrm{s}) \rightarrow \mathrm{Ag}^{+}(\mathrm{g})+\mathrm{I}^{-}(\mathrm{g})$
20. Curve \mathbf{X} on the graph below shows the volume of oxygen formed during the catalytic decomposition of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of hydrogen peroxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which change would produce the curve \mathbf{Y} ?
A. Adding water
B. Adding some $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrogen peroxide solution
C. Using a different catalyst
D. Lowering the temperature
21. Bromine and nitrogen(II) oxide react according to the following equation.

$$
\mathrm{Br}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

Which rate equation is consistent with the experimental data?

$\left[\mathrm{Br}_{2}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$[\mathrm{NO}] / \mathrm{mol} \mathrm{dm}^{-3}$	Rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathbf{s}^{-1}$
0.10	0.10	1.0×10^{-6}
0.20	0.10	4.0×10^{-6}
0.20	0.40	4.0×10^{-6}

A. \quad rate $=k\left[\mathrm{Br}_{2}\right]^{2}[\mathrm{NO}]$
B. \quad rate $=k\left[\mathrm{Br}_{2}\right][\mathrm{NO}]^{2}$
C. \quad rate $=k\left[\mathrm{Br}_{2}\right]^{2}$
D. rate $=k[\mathrm{NO}]^{2}$
22. Consider the reaction between gaseous iodine and gaseous hydrogen.

$$
\mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta H^{\ominus}=-9 \mathrm{~kJ}
$$

Why do some collisions between iodine and hydrogen not result in the formation of the product?
A. The I_{2} and H_{2} molecules do not have sufficient energy.
B. The system is in equilibrium.
C. The temperature of the system is too high.
D. The activation energy for this reaction is very low.
23. Which step is the rate-determining step of a reaction?
A. The step with the lowest activation energy
B. The final step
C. The step with the highest activation energy
D. The first step
24. Which statement about chemical equilibria implies they are dynamic?
A. The position of equilibrium constantly changes.
B. The rates of forward and backward reactions change.
C. The reactants and products continue to react.
D. The concentrations of the reactants and products continue to change.
25. Which is the correct relationship between enthalpy of vaporization, intermolecular forces and boiling point?
A.

Enthalpy of vaporization	Intermolecular forces	Boiling point
small	weak	high
small	strong	low
large	weak	high
large	strong	high

26. Which salts will produce an acidic solution when dissolved in water?
I. $\mathrm{CH}_{3} \mathrm{COOK}$
II. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
III. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
27. Consider the equilibrium below.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Which species represent a conjugate acid-base pair?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+}$
28. The K_{b} value for a base is $5.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ at 298 K . What is the K_{a} value for its conjugate acid at this temperature?
A. 5.0×10^{-2}
B. 2.0×10^{-6}
C. 2.0×10^{-12}
D. 2.0×10^{-13}
29. Which compounds can be mixed together as solutions of equal volume and concentration to form a buffer solution?
A. Nitric acid and potassium hydroxide
B. Nitric acid and potassium nitrate
C. Propanoic acid and potassium hydroxide
D. Propanoic acid and potassium propanoate
30. Consider the following standard electrode potentials.

$$
\begin{array}{ll}
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{~s}) & E^{\ominus}=-0.76 \mathrm{~V} \\
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq}) & E^{\ominus}=+1.36 \mathrm{~V} \\
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(\mathrm{~s}) & E^{\ominus}=-2.37 \mathrm{~V}
\end{array}
$$

What will happen when zinc powder is added to an aqueous solution of magnesium chloride?
A. No reaction will take place.
B. Chlorine gas will be produced.
C. Magnesium metal will form.
D. Zinc chloride will form.
31. Which species could be reduced to form NO_{2} ?
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO_{3}^{-}
C. HNO_{2}
D. NO
32. What are the features of a standard hydrogen electrode?
I. A temperature of 298 K
II. A carbon electrode
III. Hydrogen gas at $1.01 \times 10^{5} \mathrm{~Pa}(1 \mathrm{~atm})$ pressure
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
33. Which molecule has a chiral centre?
A. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}$
34. The compounds $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and $\mathrm{HOOCCH} \mathrm{COOH}_{2}$ react to form a polymer. What is the structure of the repeating unit of the polymer?
A. $\left(\mathrm{HNCH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2} \mathrm{NHCO}\right)$
B. $\left(-\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{NHCOCH}_{2} \mathrm{CO}\right)$
C. $\left(\mathrm{OCCH}_{2} \mathrm{CONHCH}_{2} \mathrm{NHCO}\right)$
D. $\left(\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{NHCOCH}_{2} \mathrm{NH}\right)$
35. Which two molecules are cis-trans isomers of each other?
W

X

Y

Z

A. X and Z
B. X and Y
C. W and Y
D. W and Z
36. What is the correct order of reaction types in the following sequence?

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br} \xrightarrow{\text { I }} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \xrightarrow{\text { II }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow{\text { III }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOC}_{2} \mathrm{H}_{5}
$$

A.

I	II	III
substitution	oxidation	condensation
addition	substitution	condensation
oxidation	substitution	condensation
substitution	oxidation	substitution

37. Which of the following pairs are members of the same homologous series?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
B. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
38. Which of the following statements about alkenes is not correct?
A. They have reactive double bonds.
B. They can form addition polymers.
C. They react mainly by substitution.
D. They can react with water to form alcohols.
39. What is the type of mechanism and an important feature of the reaction between $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}$ and aqueous NaOH ?
A.

Mechanism	Feature
$\mathrm{S}_{\mathrm{N}} 1$	a transition state
$\mathrm{S}_{\mathrm{N}} 1$	an intermediate
$\mathrm{S}_{\mathrm{N}} 2$	a transition state
$\mathrm{S}_{\mathrm{N}} 2$	an intermediate

40. A burette reading is recorded as $27.70 \pm 0.05 \mathrm{~cm}^{3}$. Which of the following could be the actual value?
I. $\quad 27.68 \mathrm{~cm}^{3}$
II. $\quad 27.78 \mathrm{~cm}^{3}$
III. $\quad 27.74 \mathrm{~cm}^{3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
